Teorainn (matamaitic)
Sa mhatamaitic, luach a ndruideann athróg leis. Mar shampla, féadfaidh an athróg a bheith cothrom le suim líon téarmaí i seicheamh, mar seo: Sn = 1/1 + 1/2 + 1/4 + 1/2n. De réir mar a théann n i méid (is é sin, n →∞), druideann S le luach 2. Mar shampla eile, féadfaidh athróg y a bheith spleách ar athróg eile x, agus féadfaidh sí druidim le teorainn de réir mar a dhruideann x le luach ar leith. Abair gur y = 2 + 1/x, druideann sé le luach 2 de réir mar a théann x i méid. Tá coincheap na teorann bunúsach i gcalcalas agus cuid mhaith brainsí den mhatamaitic. Sainmhínítear teorainn feidhme f(x), L, mas ann di, de réir mar a dhruideann x le luach ar leith x0, leis an riail seo a leanas, do gach ε > 0, δ > 0 ann ionas más | x-x0| < δ, go gciallaíonn sé sin gur |f(x)- L| < ε. Thug an matamaiticeoir cumasach Francach Augustin Louis Cauchy (1789-1857) an bealach seo le teorainn a shainmhíniú sna 1820idí mar chuid den chéad iarracht shásúil dianchur síos a dhéanamh ar an gcalcalas.[1]
Tagairtí
cuir in eagar- ↑ Hussey, Matt (2011). "Teorainn". Fréamh an Eolais. Coiscéim. p. 660.
Tá an t-alt seo bunaithe ar ábhar as Fréamh an Eolais, ciclipéid eolaíochta agus teicneolaíochta leis an Ollamh Matthew Hussey, foilsithe ag Coiscéim sa bhliain 2011. Tá comhluadar na Vicipéide go mór faoi chomaoin acu beirt as ucht cead a thabhairt an t-ábhar ón leabhar a roinnt linn go léir. |
Is síol é an t-alt seo. Cuir leis, chun cuidiú leis an Vicipéid. Má tá alt níos forbartha le fáil i dteanga eile, is féidir leat aistriúchán Gaeilge a dhéanamh. |